Choose an AI Type
| Type | Description | Example |
|---|---|---|
| Rule-Based AI | Follows predefined if-else rules | Chatbot, Decision Tree |
| Machine Learning (ML) AI | Learns from data | Image classifier, Spam detector |
| Chatbot (NLP) | Uses natural language processing | Customer support bot |
1. Build a Simple Rule-Based AI (No ML)
A basic AI that responds based on rules (like a chatbot).
Example: A Weather Advice Bot
python
def weather_advisor(weather):
weather = weather.lower()
if weather == "sunny":
return "Wear sunscreen and sunglasses!"
elif weather == "rainy":
return "Take an umbrella and a raincoat."
elif weather == "cold":
return "Wear a warm jacket and gloves."
else:
return "I'm not sure, check the weather again."
# Test the AI
user_input = input("What's the weather today? (sunny/rainy/cold): ")
print(weather_advisor(user_input))
Output:
text
What's the weather today? (sunny/rainy/cold): sunny Wear sunscreen and sunglasses!
2. Build a Simple ML-Based AI (Using Scikit-Learn)
A machine learning model that predicts outcomes from data.
Example: A Spam Detector
Step 1: Install Required Libraries
bash
pip install scikit-learn pandas numpy
Step 2: Train a Model
python
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
# Sample dataset (message, label: 0=Not Spam, 1=Spam)
data = {
"message": [
"Free prize! Click now!",
"Meeting at 3 PM",
"Win a million dollars!",
"Project update"
],
"label": [1, 0, 1, 0]
}
df = pd.DataFrame(data)
# Convert text to numbers (Bag of Words)
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(df["message"])
# Train a Naive Bayes classifier
model = MultinomialNB()
model.fit(X, df["label"])
# Test the AI
test_message = ["Free vacation offer!"]
test_X = vectorizer.transform(test_message)
prediction = model.predict(test_X)
print("Spam" if prediction[0] == 1 else "Not Spam")
Output:
text
Spam
3. Build a Simple AI Chatbot (Using NLP)
A chatbot that responds to user input (using NLTK or ChatterBot).
Example: A Basic Chatbot with ChatterBot
bash
pip install chatterbot chatterbot_corpus
python
from chatterbot import ChatBot
from chatterbot.trainers import ChatterBotCorpusTrainer
# Create a chatbot
chatbot = ChatBot("SimpleBot")
# Train it on English data
trainer = ChatterBotCorpusTrainer(chatbot)
trainer.train("chatterbot.corpus.english")
# Chat with the AI
while True:
user_input = input("You: ")
if user_input.lower() == "exit":
break
response = chatbot.get_response(user_input)
print("Bot:", response)
Output:
text
You: Hello Bot: Hi there! You: How are you? Bot: I am doing well, thank you! You: exit
4. Next Steps
- Improve with more data (for ML models).
- Use deep learning (TensorFlow/PyTorch) for complex AI.
- Deploy as a web app (Flask, FastAPI).

